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Abstract. We consider in detail Raman scattering by vibration of the apical oxygen ions in the RBa2Cu3O7

superconducting cuprates. The scattering intensity is very sensitive to the ratio of diagonal and off-diagonal
matrix elements of electron-phonon coupling, bandstructure, and carrier concentration. Our results show
a large quantitative difference between the results of frozen-phonon and perturbational approach to the
Raman process. The discrepancy becomes especially large when interband transitions to the states near
the Fermi level are close to resonance with the incident light. The calculation of phonon-induced ion
charge fluctuations shows an analogous discrepancy. The reason for these effects is the possibility of carrier
redistribution between different parts of the Fermi surface arising in the frozen-phonon approximation. Our
results show that Raman scattering in superconducting superlattices is very sensitive to the properties of
the states near the Fermi level. For this reason experiments performed on the superlattices can help to
resolve the discrepancy.

PACS. 63.20.Kr Phonon-electron and phonon-phonon interaction – 74.25.Jb Electronic structure –
74.25.Kc Phonons

1 Introduction

The bandstructure of solids at an energy scale of sev-
eral eV can be probed by optical spectroscopy. Ellipso-
metric measurements can give precise values of the real
and imaginary part of the dielectric tensor components
εαβ(ω) with α and β being Cartesian indices. However,
it is often hard to determine the contribution of specific
transitions between different electronic bands to εαβ(ω).
This problem can be partially solved by light scattering
spectroscopy. Light scattering by lattice vibrations pro-
vides a possibility to determine the contribution of those
electron states which are related to ions vibrating in the
considered phonon mode.

The high-Tc superconductors show interesting Ra-
man spectra in the scattering by phonons as well by
electronic excitations. Phonon frequencies and damping
were investigated by Raman spectroscopy [1]. Impor-
tant information about electron-phonon coupling, mag-
nitude and symmetry of the superconducting gap was
obtained from the phonon self-energy effects when the
crystal is cooled below the transition temperature Tc [2].
All these effects are mainly related to the low-energy
electronic states near the Fermi level [3,4]. At the same
time, Raman spectroscopy offers a possibility to investi-
gate the bandstructure of a crystal on a much larger en-
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ergy scale. This can be done by studying the resonant
behavior of the Raman scattering intensity as a function
of the exciting light frequency ω. The local density ap-
proximation applied for the calculation of Raman scat-
tering intensity by the A1g modes in YBa2Cu3O7 [5–7]
extended the understanding of the Raman process in
the superconducting cuprates. A considerable mixing of
atomic vibrations within the fully symmetrical phonon
modes in many high-Tc compounds [5,8–10] strongly in-
fluences the scattering intensity.

In the RBa2Cu3O7 crystals (where R is a rare-earth
atom) the strongest contribution to the phonon Raman
scattering comes from the electronic states related to the
Cu1-O1-(O4)2 chains. (Being strongly bound to the Cu1-
O chains, the apical oxygen is also regarded as a chain
atom here.) The strongest mode is the fully symmetri-
cal out-of-phase vibration of the pair of apical oxygen
ions. This A1g mode has a frequency of approximately
500 cm−1 in all these compounds [1]. In this paper, we
investigate light scattering by this vibration and its rela-
tion to the electronic bands exhibiting the character of the
chain atoms.

The interest to this investigation is motivated at least
by the following reasons:

First, a considerable part of the superconducting con-
densate is related to the chains making them important
for the formation of the superconducting state. As it was
shown by Combescot and Leyronas [11,12], the coupling
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between chains and planes can be responsible for
the symmetry of the order parameter. Vibrations of the
apical oxygen naturally modulates the plane-chain cou-
pling [9]. The chains induce an anisotropy of the band-
structure and the superconducting gap and thus lead to
the so-called “d + s” pairing [13] observed by electronic
Raman scattering [14].

Second, the intensity of the apical oxygen mode in-
creases approximately by a factor of two by cooling the
crystal below Tc [15,16]. This increase shows a clear de-
pendence on ω and on the polarization direction of the
incident and scattered light. The large effect cannot be ex-
plained without taking into account that the mechanism
of Raman scattering is related to the electronic states in
the copper-oxygen chain band.

The third reason is related to the puzzling
properties of the PrBa2Cu3O7 compound and
(PrBa2Cu3O7)m(YBa2Cu3O7)n superlattices, where
m and n are the number of the Pr- and Y layers per
the superlattice unit cell. The Pr-based cuprate does not
demonstrate the superconducting transition and is the
only exception among the RBa2Cu3O7 family. A qualita-
tive analysis of its intriguing behavior was presented by
Mazin [17]. Experimental results of Takenaka et al. show
that the chains in this compound exhibit the same prop-
erties as in all others, however, the CuO2 planes are quite
different from their counterparts [18]. The superlattices
demonstrate physical properties intermediate between
the pure PrBa2Cu3O7 and YBa2Cu3O7 compounds. The
presence of Pr layers decreases the transition temperature
and causes a charge transfer between different layers
within the elementary cell [19,20]. New intense phonon
peaks in the Raman spectra of the superlattices are a
consequence of the charge transfer [21]. The (m : n) -
ratio can artificially govern the amount of carriers in the
chains [19]. As we will see below, the Raman intensity is
sensitive to the carrier concentration, and, therefore, it
should be possible to extract its value from the Raman
data.

There are two different approaches for the calculation
of Raman intensities. One of them is the “frozen-phonon
approximation” [22], widely used for the investigation of
phonon properties of solids. The other method is the ap-
plication of perturbation theory [23] based on the analysis
of Feynman graphs describing the scattering. A big ad-
vantage of the first technique is that it is well-adopted for
first-principles calculations for the bandstructures of crys-
tals [5–7]. Below we will show with a simple model that
being applied to a metal, in particular to a high-Tc com-
pound, these approaches can give quantitatively different
results. The discrepancy becomes large in case of resonant
Raman scattering when the photon energy is close to en-
ergies of interband transitions in the vicinity of the Fermi
surface.

The paper is organized as follows: First, we will present
the tight binding model of copper-oxygen chains includ-
ing the apical oxygen, and apply it to the investigation of
electron-phonon and electron-light coupling. On this ba-
sis we will investigate the perturbational and the frozen-

Fig. 1. (a) Orbitals included in the tight-binding model. Ar-
rows show displacement of the O4 ions in the A1g mode.
(b) The bandstructure for the parameters adopted in the text.

phonon technique for the calculation of Raman intensities,
present the results of these two different approaches and
compare them for several values of the model parameters.
In addition, we will consider the phonon-driven charge re-
distribution within the chains and between the chains and
the CuO2 planes. These fluctuations and their relation to
the Raman scattering will be investigated within both the
approaches, that give different results in this case too.

2 Bandstructure, electron-phonon
and electron-light coupling

2.1 Tight-binding model

Raman scattering is a result of indirect interaction of the
lattice with light propagating in a solid. This interaction
shows up as the influence of the phonon on the dielectric
function. In order to calculate the phonon Raman scat-
tering intensity three ingredients are required: (1) band-
structure, (2) electron-light coupling, characterized by ma-
trix elements of the dipole transitions between the bands
and (3) electron-phonon coupling matrix elements. To ob-
tain all these components we shall apply the tight-binding
model which allows to get reasonable results under sim-
plified conditions [24].

We consider the Cu1-O1-(O4)2 chain element of unit
cell consisting of Cu1, chain oxygen O1 and the pair of
the apical oxygen O4 atoms, as shown in Figure 1a. The
tight-binding wave function is:

|µ, k〉 ≡ Ψµ,k =
1√
N

∑
l,o

ηµ,o (k)ψo (r−Rl,o) eikyl,o , (1)

where k is the electron momentum along the chain (y
axis), Rl,o are the lattice site vectors with the index o enu-
merating the orbital wave functions ψo (r−Rl,o). Here,
o = 1 corresponds to the Cu1(dz2−y2) orbital, o = 2
describes O1(py) states, and o = 3, 4 refer to the pair
of O4(pz), respectively. The index µ marks the bands,
ηµ,o (k) are the tight-binding coefficients, and N is the
number of unit cells. We suppose that the lattice constant
along the chain is equal to unity, and the y−coordinates
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of the O1 ions are n + 1/2, where n is an integer. The
model Hamiltonian is written as:

Ĥ =


0 istc ta −ta
−istc Ec 0 0
ta 0 Ea 0
−ta 0 0 Ea

 , (2)

where s = 2 sin(k/2). The Hamiltonian includes the Cu1-
O4 hopping element ta, Cu1-O1 hopping tc, and the en-
ergy differences Ec and Ea of the oxygen orbitals in the
chain and the apical site, respectively, with respect to the
Cu1 site energy assumed to be zero. For the Hamiltonian
in equation (2) we find four electron bands, depicted in
Figure 1b. Three of them have finite dispersion and wave
functions even with respect to the reflection in the (xy)
plane. The fourth band with the energy E0(k) = Ea is
flat, its wave function is odd with respect to the reflection
and purely consists of the two O4 orbitals decoupled from
Cu1 and O1. The Fermi level intersects the upper band
E1(k) such that the Fermi energy EF = E1(kF), and the
Fermi momentum kF is counted from the π-point. We ac-
cept the band structure parameters Ec = 0, Ea=0.8 eV,
tc = 1.4 eV, ta = 0.7 eV, and kF = 0.8π to get an agree-
ment with the first-principles bandstructure [6,7].

2.2 Electron-phonon and electron-light coupling

When the ions are displaced from their equilibrium po-
sitions, the electron site energies and intersite hopping
matrix elements are perturbed. Therefore, a perturbation
should be added to the tight-binding Hamiltonian in equa-
tion (2). For the out-of-phase vibration of the apical oxy-
gen ions along the z-axis, the perturbation includes diago-
nal and non-diagonal matrix elements of electron-phonon
coupling:

Ĥe−ph = Q


0 0 Ct −Ct

0 0 0 0
Ct 0 CE 0
−Ct 0 0 CE

 , (3)

where Q is the O4 ion displacement, while CE and Ct

are deformation potentials, corresponding to the changes
in the site energy and hopping, respectively. Note that
Ct ≤ 0 since the hopping is diminished with increasing
Cu1-O4 distance. The interplay of CE and Ct will result
in an effective k-dependent deformation potential, that
determines the shift of the band energies. For a given field
V (r) within the unit cell, the deformational potentials can
be calculated as

CE =
∫
ψ2

4 (r−Rl,3)∇V (r)d3r,

Ct =
∫
ψ4 (r−Rl,4)ψ1 (r−Rl,1)∇V (r)d3r

+
∫
ψ4 (r−Rl,4)V (r)∇ψ1 (r−Rl,1) d3r. (4)

The potential CE arises due to the asymmetric crystalline
environment of the O4 site located between the Cu-O1
chain and the CuO2 plane. The asymmetry is mainly de-
termined by Coulomb forces due to the high charge den-
sity in the planes, that is approximately two electrons per
CuO2 formula. The second contribution, Ct, is nonzero
even for a crystal field which is symmetric with respect to
reflection in the horizontal plane containing the O4 ions.
Mapping the tight-binding model onto the first-principle
results [6,7] yields CE ≈ 10 eV/Å, and Ct ≈ −5 eV/Å.

Proceeding now to a momentum representation, we
rewrite our Hamiltonian for zero-momentum Raman-
active phonons in the following form:

Ĥe−p =
z0√
2N

∑
µ,µ′

∑
k

gµ,ν (k)
(
â+ + â

)
ĉ+µ,k ĉν,k. (5)

Here z0 =
√
~/2MΩ denotes the zero-point vibrational

amplitude, M is the oxygen mass, andΩ is the phonon fre-
quency (we put ~ = 1 below), â+(â) is the phonon creation
(annihilation) operator, while ĉ+µ,k (ĉν,k) is the correspond-
ing operator for electrons. The interband and intraband
matrix elements in equation (5) can be obtained by

gµ,ν (k) =
∑
o1,o2

η∗µ,o1
(k)
(
Ĥe−phQ−1

)
ην,o2(k). (6)

To describe coupling to light, we use the dipole approxima-
tion, where the interaction of an electron with the electric
field E is given by V̂e−l = −eEr, where e is the elec-
tron charge (we assume e = −1 below). The interband
matrix elements of the radius-vector components between
the |ν, k〉 and |µ, k〉 band states are:

〈µk|ẑ|νk〉 = Rz
∑
o1,o2

η∗µ,o1
(k)Πz

o1,o2
ην,o2 (k) ,

〈µk|ŷ|νk〉 = Ry cos (k/2)
∑
o1,o2

η∗µ,o1
(k)Πy

o1,o2
ην,o2 (k) (7)

where the matrices Πα
o1,o2

have the following form:

Πz
o1,o2

=


0 0 1 1
0 0 0 0
1 0 0 0
1 0 0 0

 , Πy
o1,o2

=


0 1 0 0
1 0 0 0
0 0 0 0
0 0 0 0

 . (8)

Here Rα is the matrix element of the radius-vector com-
ponent r̂α between Cu2(dz2−y2) and O(pα) states within
the unit cell. Non-zero nondiagonal components in Πz

o1,o2

and Πy
o1,o2

correspond to Cu1-O4 and Cu1-O1 transitions,
respectively. The factor cos (k/2) in equation (7) appears
due to the Bloch exponents exp(−ik/2) and exp(ik/2) re-
lated the O1 ions from the nearest-neighbor unit cells,
as shown in Figure 1a. At the Brillouin zone boundary
k = ±π the matrix element of ŷ vanishes due to sym-
metry. On these planes, the oxygen orbitals O1(py) sur-
rounding the Cu1 ion form even state with respect to the
y ←→ −y reflection. The dz2−y2 orbital is also even, thus
the corresponding matrix element of the odd ŷ operator
is zero.
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3 Raman scattering

3.1 Frozen-phonon approach

In order to investigate the Raman scattering, let us con-
sider a light beam propagating in a solid characterized by
a dielectric tensor εαβ (ω) = 1 + 4πχαβ (ω) with χαβ (ω)
being the polarizability. The nonzero components of the
contribution of the Cu-O1-(O4)4 chains to the polarizabil-
ity for the model chosen above are given by:

χαα(ω) = 2
∫ kF

−kF

χαα(ω, k)
dk
2π
,

χαα(ω, k) =
∑
i,f

∣∣∣〈fk| M̂α |ik〉
∣∣∣2 [ 1

ωfi(k)− ω − iΓ

+
1

ωfi(k) + ω − iΓ

]
. (9)

Here 〈fk| M̂α |ik〉 is the dipole matrix element (M̂α =
−rα) between the initial (occupied) and final (empty)
band states, ωfi(k) = Ef (k) − Ei(k), 2 is the spin fac-
tor, and kF is the Fermi momentum. Γ is the lifetime
broadening of the final state |fk〉, which we will assume
Γ =0.1 eV below. For χzz (ω) only initial flat band gives a
nonzero dipole matrix element, while for χyy (ω) the two
dispersive bands below the Fermi level contribute to the
polarizability.

To understand how lattice vibrations scatter the light,
we start with the frozen-phonon approximation devel-
oped for Raman scattering by Mills, Maradudin, and
Burstein [22]. Within this approach, the phonon is con-
sidered as an infinitely slow ionic displacement, that at
each time t leads to a static perturbation within the unit
cell as written in equation (3). For the band state |µk〉
this perturbation shifts the energy and makes the wave
function dependent on the ion displacements. For these
reasons the lattice vibration causes a modulation of the
dielectric function, and we obtain for the phonon-induced
variation:

δχαα(ω) = 2Q ∂

∂Qχαα(ω), (10)

where the factor 2 appears since two ions vibrate in the
mode. As a result, a peak is observed in the light scattering
spectrum at the frequency Ω. The full Raman intensity
integrated over the phonon peak is given by

Iαα(ω) ∼ ω4δl,α
〈
Q2
〉
|dχαα(ω)/dQ|2 , (11)

where δl,α is the light penetration depth for the given light
polarization. Here we have assumed that the incident and
scattered light are polarized along the α-direction.

As we can conclude from equation (9), the change in
the polarizability due to displacement of ions can be rep-
resented by the sum of four terms:

δχαα = δχEαα + δχηαα + δχRααα + δχkF
αα. (12)

Fig. 2. Charge redistribution between the plane and chain
bands. The solid lines correspond to the unperturbed bands,
while the dashed lines show the phonon-driven changes in the
band energies, and, in turn, in the carrier redistribution.

The first term arises due to changes in the band ener-
gies, which have the form δEµ (k) = Qgµµ (k), and, in
turn, δωfi = [gff (k)− gii (k)]Q. Since the band energies
and the interband distances are variated by the perturba-
tion, the polarizability is changed as well, as we can see in
equation (9). The second contribution is due to changes
in the electronic wave function. The variation of the tight-
binding coefficients included in the matrix elements of M̂α

is given by perturbation theory as:

δηµ,o(k) = Q
∑ gνµ(k)

Eµ(k)−Eν(k)
ην,o(k). (13)

The origin of the third term, δχRααα , is related to the fact
that the overlap of the Cu1 and O4 orbitals strongly de-
pends on the Cu1-O4 distance and therefore is modulated
by the phonon. Since δωfi(k) leads to a variation of the
denominator in the second line of equation (9), δχEαα cor-
responds to a strong dependence of the scattering intensity
on the light frequency, whereas the change of the matrix
causes a weaker one.

The last contribution, δχkF
αα, has a collective many-

particle origin specific for metals. It arises from a change
of the Fermi surface driven by the ion displacements. For
the case of our interest it is due to the following effect: In
RBa2Cu3O7 the copper-oxygen chains are in equilibrium
with the CuO2 planes having the common Fermi energy
EF. For the problem considered the planes play a role of a
charge reservoir. The O4 vibration influences mainly the
states in the chains, leading to a charge redistribution be-
tween the chain and plane bands in order to keep their
Fermi energies equal and the total amount of carriers con-
stant (see Fig. 2). This variation of the concentration and,
in turn kF, can be easily calculated as

δkF = −πδE(kF)
NcNp

Nc +Np
, (14)

where Nc and Np are the density of states at the Fermi
level for the chain band, and both the plane bands, respec-
tively. δE(kF) in equation (14) is the shift of the energy for
the ±kF states determined by intraband electron-phonon
coupling which is δE(kF) = Qg11(kF). The electron re-
distribution leads to the δχkF

αα term in equation (10). The
shift of the Fermi level due to change of the concentration
of the carriers within the chains is given by:

δEF = δE(kF) +
1
π

δkF

Nc
= δE(kF)

Nc

Nc +Np
· (15)
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Fig. 3. Feynman graph for Raman scattering. The solid lines
describe electrons, the wavy lines correspond to photons while
dashed-dot line presents the phonon. Black circles present
the interband matrix elements of the dipole momentum while
the white square is the matrix element of electron-phonon
coupling.

Since the Fermi surface in the planes is close to a Van
Hove singularity, one can expect Np � Nc, resulting in a
pinning of the Fermi level with δEF � δE(kF) [25].

3.2 Perturbational approach and Feynman graphs

Another approach to the calculation of the Raman inten-
sity is based on perturbation theory. There the scattering
occurs due to a virtual excitation of an electron-hole pair
by incident light. Due to electron-phonon coupling a com-
ponent of the pair (electron or hole) excites a phonon and
the pair recombines emitting a scattered photon. This pro-
cess is described by the Feynman graph shown in Figure 3.
To get the total matrix element of the transition between
initial and final state we sum up the graphs corresponding
to all possible processes, which include alternative order-
ing of the electron-phonon and electron-light coupling ma-
trix elements and bands. The corresponding expression for
effective phonon-light coupling matrix element γαα(k, ω)
at a given k has the form

γαα(k, ω) =
∑
i,j,f

γαα(k, ω|j, f, i),

γαα(k, ω|j, f, i) =
∫
〈ik| r̂α |jk〉Gj(K3)gjf (k)Gf (K2)

× 〈fk| r̂α |ik〉Gi(K1)
dE
2π

, (16)

where we again assume the incident and scattered light
to be polarized along the α-direction. The 4-vectors are
determined as K1 = (E, k), K2 = (E + ω, k), K3 = (E +
ω −Ω, k) and the Green’s functions are defined as:

Gµ(E, k) =
1

E −Eµ(k) + iΓµsign [Eµ(k)−EF]
, (17)

where Γ1 = Γ and Γµ6=1 = 0. After integration over the
momentum we find the Raman matrix element

Rαα(ω) =
∫ kF

−kF

γαα(k, ω)
dk
2π
, (18)

and the Raman intensity

Iαα(ω) ∼ δl,α |Rαα(ω)|2 . (19)

There are two different kinds of Feynman graphs for
the phonon Raman scattering. The first one describes a
phonon coupling electron bands with the same occupancy
(nj = nf = 0 or nj = nf = 1), whereas the other graphs
involve a phonon coupling one empty and one occupied
band state (nj 6= nf ). For the two processes, integration
over energy E in equation (16) yields a (k, ω)-dependence
of the matrix element:

γαα(k, ω|j, f, i) ∼ 〈ik| r̂α |jk〉 gjf (k) 〈fk| r̂α |ik〉
ω − ωfi(k)

×


1

ω − ωji(k)
, nj = nf

1
ωfj(k)

, nj 6= nf . (20)

From equations (9, 12), and (20) we find a correspon-
dence between the frozen-phonon and perturbative ap-
proaches. The sum of the Feynman graphs, where a
phonon couples the same electron states (f = j), corre-
sponds to the term determined by δωfi(k) in the frozen-
phonon approximation. It can be readily seen from the
same resonance dependence of the processes, namely
∂χαα(ω, k)/∂ωfi(k) ∼ [ω − ωfi(k)]−2, demonstrating the
same behavior as γαα(k, ω|j, f, i) for j = f . The nj 6= nf
graph being less resonant leads to the Raman intensity
arising due to a phonon-driven polarization of wave func-
tions, that is to ∂ηµ,o(k)/∂Q. This derivative being ob-
tained from equation (13) is proportional to ω−1

fj (k), like
the contribution of the nj 6= nf graph in equation (20).

3.3 Charges of ions

Since the atomic displacements induce changes in the site
energies and hopping matrix elements, they can cause a
charge transfer between the ions in metals [26]. We can
calculate now the charge transfer among the chain ions
and from the chains to the CuO2 planes induced by apical
oxygen displacement. The charge transfer should minimize
the total energy of the system and keep the Fermi energy
the same at all the parts of the Fermi surface. The first
process conserves the total charge of the Cu1-O1-(O4)2

complex. The second one changes it so that the Fermi
energy remains equal for the chains and planes.

The mobile carriers in RBa2Cu3O7 correspond to the
hole band states above the Fermi level, and, therefore, the
charges of the oxygen ions, in which we will be mainly
interested, are given by:

Qo = 2
∫ kF

−kF

|η1,o(k)|2 dk
2π
, (21)

where 2 is the spin factor. Note that Qo in equation (21) is
positive since we supposed that O2− ions have zero charge.
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Fig. 4. Raman efficiency calculated in the frozen-phonon ap-
proximation in zz-polarization for different values of ζ, with
Ct = −0.5CE. For the strong peak at ω ≈ 2.3 eV related
to transition to the top of the µ = 1 band, the result is ζ-
independent.

Since the charges are determined by the coefficients of the
tight-binding wave function and integration over the states
with −kF < k < kF, their changes consist of two terms,
analogously to the contributions to the Raman matrix el-
ement:

δQo = δQηo + δQkF
o . (22)

Here, δQηo arises due to a modulation of the tight-binding
wave functions. The second term, δQkF

o , is determined by
the variation in the Fermi momentum, arising from a pos-
sible charge transfer between the Cu-O1-(O4)2 chains and
CuO2 planes, that is analogous to equation (14). The per-
turbational approach gives only the first contribution cal-
culated as

δQηo = 4
∫ kF

−kF

η1,o(k)δη1,o(k)
dk
2π
, (23)

where we supposed that η1,o(k) is real. Changes in the
wave functions δη1,o(k) shown in equation (13) are due
to interband matrix elements of the electron-phonon cou-
pling. The second term is given by

δQkF
o = 4η2

1,o (kF) δkF, (24)

where δkF is determined by equation (14).

4 Results and discussion

4.1 Raman efficiency

Figure 4 presents the calculated Raman efficiency∣∣R−1
z ∂χzz(ω)/∂Q

∣∣2 obtained within the frozen-phonon
approach for different ζ = Np/(Np +Nc) values. The solid
line corresponds to ζ = 0, and, therefore, describes also

the perturbational result, where no charge redistribution
between the planes and chains is possible. The first peak at
approximately 0.7 eV corresponds to the transition from
the µ = 0 band to the Fermi level while the second one
at ω ≈ 2.3 eV comes from the transition to the top of
the band (k = π). The intensity of the latter is enhanced
by the infinite density of states (Van Hove singularity)
near the band top. We should note, however, that the
resonance frequency of the first peak is too low for experi-
mental observation. The situation is quite different for the
yy-polarization. It does not demonstrate resonance due to
transition to the top of the upper band, since according
to equation (7), the interband matrix element at k = π
is zero. The two peaks shown in Figure 5a arise due to
transitions to the Fermi level from the bands 2 and 3,
respectively.

The interplay of the parameters CE and Ct doesn’t
change the peak positions but crucially influences the ra-
tio of the peak intensities and shape of the resonance curve
in the yy-polarization, as we can clearly see from compari-
son of Figures 5a and b, that present the Raman efficiency
for Ct/CE = −0.5 and Ct = 0, respectively. Our results
qualitatively reproduce the main experimental observa-
tions of resonant Raman scattering by the apical oxygen
vibration: (i) For ω ≈ 2.5 eV the mode shows a sharp reso-
nance in the zz-polarization and a moderate resonance in
the yy-polarization. (ii) Raman intensity Izz(ω)� Iyy(ω)
in the experimentally investigated region of ω. A direct
comparison to the experiment, however, cannot be done
at present since the parameters Rz and Ry as well as the
light penetration depths δl,α are not determined within
our model. Since the ratio Izz(ω)/Iyy(ω) is proportional
to (Rz/Ry)4, detailed information about these parame-
ters is desirable to allow for a quantitative comparison
with experimental results.

Regarding the transition to the Fermi level, the frozen-
phonon approach can give the scattering intensity con-
siderably different from that for the perturbational one
as we can see in Figures 4 and 5. This fact emphasizes
the importance of the term δχkF

αα. The role of the δkF

induced contribution can be seen from the following argu-
ment. Suppose that the resonance occurs near the Fermi
level, that is ω = ωfi(kF) +∆, and |∆| � ω. Due to the
phonon driven changes in the Fermi momentum, accord-
ing to equation (9) we get for the real and imaginary part
of the susceptibility change:

Re δχkF
αα ∼ δkF

∆

∆2 + Γ 2

∣∣∣〈fkF| M̂α |ikF〉
∣∣∣2 ,

Im δχkF
αα ∼ δkF

Γ

∆2 + Γ 2

∣∣∣〈fkF| M̂α |ikF〉
∣∣∣2 , (25)

where δkF is estimated from equation (14) for Nc ∼ Np

and Nc ∼ 1/vF (vF is the Fermi velocity) as δkF ∼
g11(0)Q/vF ∼ CEQ/vF. The effect of the changes in the
Fermi momentum is important when ∆ approaches zero.
At the same time, due to changes in the denominator in
equation (9), δχE

αα is of the same order of magnitude
as Im δχkF

αα, as we can see when taking the derivative
with respect to ωfi in the second line of equation (9).
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Fig. 5. (a) Raman efficiency as a function of ω in yy-polarization for different values of ζ at Ct = −0.5CE. The units are same
as in Figure 4. (b) Same as Figure 5a, but for at Ct = 0.

This fact implies that both contributions originating from
δkF and δωfi, are equally important. Note that for both
cases the main contribution to δχαα comes from changes
in the imaginary part of the polarizability. It can be read-
ily understood since in the limit of small Γ , Imχαα ap-
pears as a step function when a resonance occurs at the
Fermi level such that ∆ is close to zero.

The contribution of δkF requires an infinitely slow
perturbation, that keeps the two many-particle system
(planes and chains) in equilibrium. Note that a redistribu-
tion of electrons occurs between the states with different
momenta under a zero-momentum phonon perturbation.
To treat such collective effects it is necessary to include
relaxation processes in the model, providing the possibil-
ity for an electron redistribution between different bands
in order to follow the phonon field [27]. For this reason,
the process should take into account both, the interband
and the in-plane momentum relaxation rate. One-particle
effects (changes in energies and wave functions) and col-
lective effects occur at different time scales. The change
of electron energy and wave function happens on a short-
time scale which is of the order of E−1

F where EF ∼ 1 eV
is a characteristic electron band width. Since EF � Ω,
the frozen-phonon approximation is always valid for δχEαα
and δχηαα terms. In contrast, the redistribution requires
the time of interband relaxation and relaxation along the
Fermi surface due to impurities, electron-electron corre-
lations, and phonons. The latter might be much larger
than E−1

F and even than Ω−1. This problem does not
arise within the frozen-phonon approximation where the
perturbation is infinitely slow. Therefore the perturbative
approach could be the more reliable tool of calculation. It
is worth noting that the results obtained within density
functional theory using the frozen-phonon approximation
give the correct value of intensity for the resonance at the
top of the band but a higher value for lower frequencies [5].
We suppose that it is partially due to the above mentioned
redistribution of charges occurring in the frozen-phonon
technique applied there.

Fig. 6. Raman efficiency in yy-polarization for different values
of Fermi momenta for ζ = 0, Ct = −0.5CE. The units are same
as in Figure 4.

Figure 6 presents the resonance behavior obtained
with the perturbative approach for the yy-polarization
for different Fermi momenta kF, and therefore, different
hole concentrations within the Cu1-O1-(O4)2 chains. As
we discussed in the Introduction, the changes in kF can
be achieved in superconducting superlattices. The kF-
dependence of the Raman spectra is very strong due to
changes in the interband distances and effective defor-
mation potentials. The main contribution for the lower-
frequency peak, however, is due to the rapid increase in
the density of electronic states Nc when kF is close to
π since the bands µ = 2 and µ = 1 are almost paral-
lel at small k. Their almost parallel dispersions shown in
Figure 1b make these bands close to resonance with the
incident light in a large part of the Brillouin zone and,
therefore, increase the Raman intensity. The dependen-
cies shown in Figure 6 imply that resonant Raman spec-
tra of the (PrBa2Cu3O7)m(YBa2Cu3O7)n superlattices
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Fig. 7. Phonon-driven charge variations as function of ζ at
Ct = −0.5CE.

in yy-polarization might be strongly sensitive to the (m :
n) ratio that governs the carrier concentration in the
chains of the Pr- and Y-based subcells. Since adding and
depletion of the carriers mainly influences the states near
the Fermi surface, comparison of results of experiments
performed on different superlattices can help to distin-
guish between the perturbational and frozen-phonon ap-
proach. At the same time, the Raman scattering in zz-
polarization in the experimentally achievable region of ω
is not considerably influenced by the charge transfer. Un-
fortunately, to the best of our knowledge, the experimental
results are not available at present.

We should briefly mention the role of the term δχRααα
which is related to changes in the overlap of the orbitals.
It is not possible to calculate this contribution within our
model. However, since it corresponds to non-resonant scat-
tering, it gives only a minor contribution to the intensity.
Moreover, it is nonzero only for the zz-polarization. For
these reasons we have omitted it in our considerations.

4.2 Charge variations

In Figure 7 we present the derivatives of the ionic charges
with respect to the changes in the site energies dQo/dCEQ
for Ct = −0.5CE as a function of ζ calculated in the
frozen-phonon approximation. The values at ζ = 0 again
correspond to the perturbative approach determined by
equations (13) and (23). Since QdQo/dCE > 0 for the
oxygen orbitals and QdQo/dCE <0 for copper, we con-
clude that for these parameters some electronic charge
goes from the oxygen to the copper sites for positive Q
and vice versa. The absolute value QdQo/dCE ∼ 10−2

strongly depends on the contribution of the plane atoms
to the density of states. Assuming the ion displacement
Q to be equal to the zero-point vibrational amplitude
(≈ 0.05 Å), and CE = 10 eV/Å, the phonon-driven apical
oxygen charge variation is δQ4 ∼ 10−2. The positive slope

of all the lines in Figure 7 corresponds to the total posi-
tive charge coming from the CuO2 planes to the chains.
The QdQ2/dCE dependence on ζ is rather weak reflecting
the fact that the states near the Fermi level mainly have
Cu1 and O4 character. Here we again see a large difference
between the frozen-phonon and perturbational approach.

5 Conclusions

The calculation of Raman scattering intensities and
phonon-induced charge fluctuations in the superconduct-
ing cuprates exhibit a large difference between the frozen-
phonon and perturbational approach. Being applied to
Raman scattering, these techniques give quantitatively
different results in the case of resonant Raman scatter-
ing, especially when transitions to the Fermi level are
close to resonance with the incident light. A strong ef-
fect occurs within the frozen-phonon approach due to a
change in the Fermi momentum accompanied by a charge
redistribution between the Cu-O1-(O4)2 chains and CuO2

planes. This effect is absent within the perturbational ap-
proach. Analyzing the assumptions made to justify the
frozen-phonon approximation, we conclude that pertur-
bation theory could provide the more reliable tool for this
kind of calculation. The phonon-driven charge fluctuations
being of the order of magnitude of about 10−2 are consid-
erably determined by the charge redistribution between
the chains and planes too.

Our consideration include the diagonal and non-
diagonal electron-phonon coupling. The results show that
the Raman intensity is very sensitive to the bandstruc-
ture, the carrier concentration and the ratio of electron-
phonon coupling parameters. These dependencies imply
that these parameters might be extracted from resonant
Raman scattering experiments. From this point of view,
investigations of resonant Raman scattering in differ-
ent (PrBa2Cu3O7)m(YBa2Cu3O7)n superlattices would
be especially interesting since their carrier concentration
can be artificially governed by changes in the composition.
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